เทคโนโลยีอวกาศ
กล้องโทรทัศน์
กล้องโทรทรรศน์แบบหักเหแสง (Refractor)
เป็นกล้องโทรทรรศน์ที่ใช้เลนส์ในการรวมแสง สามารถพบเห็นโดยทั่วไป มีใช้กันอย่างแพร่หลาย กล้องโทรทรรศน์แบบหักเหแสงส่วนมากมีขนาดเล็ก เหมาะสำหรับใช้สังเกตการณ์พื้นผิวดวงจันทร์และดาวเคราะห์ เนื่องจากให้ภาพคมชัด แต่มีข้อเสียคือ เมื่อส่องดูดาวที่สว่างมาก อาจมีความคลาดสี ถ้าหากคุณภาพของเลนส์ไม่ดีพอ
กล้องโทรทรรศน์แบบหักเหแสงโดยทั่วไป ไม่เหมาะกับงานสำรวจ เนบิวลา
และกาแล็กซี เนื่องจากเทห์วัตถุประเภทนี้ มีความสว่างน้อย
จำเป็นต้องใช้กำลังรวมแสงสูง เลนส์ขนาดใหญ่ที่มีความยาวโฟกัสสั้น สร้างยาก
และมีราคาแพงมาก เลนส์ที่มีขนาดใหญ่ ทำให้ลำกล้องยาวและมีน้ำหนักมาก
ไม่สะดวกต่อการใช้งาน
กล้องโทรทรรศน์แบบสะท้อนแสง (Reflector)
กล้องโทรทรรศน์ชนิดนี้ถูกคิดค้นโดย “เซอร์ ไอแซค นิวตัน“ จึงมีอีกชื่อหนึ่งว่า “กล้องโทรทรรศน์นิวโทเนียน” (Newtonian telescope) กล้องโทรทรรศน์ชนิดนี้ใช้กระจกเว้าแทนเลนส์นูน ทำให้มีราคาประหยัด กระจกขนาดใหญ่ให้กำลังรวมแสงสูง จึงเหมาะสำหรับใช้สังเกตการณ์ เทห์วัตถุที่อยู่ไกลมาก และไม่สว่าง เช่น เนบิวลา และ กาแล็กซี ถ้าเปรียบเทียบกับกล้องแบบหักเหแสง ซึ่งมีขนาดเส้นผ่านศูนย์กลางเท่ากันแล้ว กล้องโทรทรรศน์แบบสะท้อนแสง จะมีราคาถูกกว่าประมาณสองเท่า
อย่างไรก็ตาม กล้องนิวโทเนียนมีกระจกทุติยภูมิ ตรงปากลำกล้อง
เพื่อสะท้อนแสงฉากขึ้นสู่เลนส์ตา ซึ่งอยู่ทางข้างลำกล้อง
จึงเป็นอุปสรรคขวางทางเดินของลำแสง เมื่อเปรียบเทียบกล้องแบบหักเหแสง
ที่มีขนาดเส้นผ่านศูนย์กลางเท่ากัน กล้องแบบหักเหแสงจะให้ภาพสว่าง และคมชัดกว่า)
และในทำนองเดียวกับกล้องชนิดหักเหแสง ยิ่งใช้กระจกขนาดใหญ่
และมีความยาวโฟกัสมากขึ้น ลำกล้องก็จะต้องใหญ่โตเทอะทะ และมีน้ำหนักมาก
กล้องโทรทรรศน์ชนิดผสม (Catadioptic)
กล้องโทรทรรศน์แบบผสมแบ่งเป็นชนิดย่อย ๆ ได้หลายชนิด เช่น
ชมิดท์-แคสสิเกรนส์ (Schmidt-Cassegrains), มักซูตอฟ-แคสสิเกรนส์
(Maksutov-Cassegrains) ซึ่งแต่ละชนิดจะมีความแตกต่างกันไป
ตามองค์ประกอบทางทัศนูปกรณ์ ซึ่งอาจใช้เลนส์หรือกระจกผสมกัน แต่โดยหลักการแล้ว
กล้องประเภทนี้เป็นกล้องโทรทรรศน์แบบสะท้อนแสง ซึ่งใช้กระจก 2 ชุด สะท้อนแสงกลับไปกลับมา เพื่อช่วยลดความยาวและน้ำหนักของลำกล้อง
กล้องโทรทรรศน์แบบผสมบางชนิด อาจมีการนำเอาเลนส์มาใช้ในการแก้ไขภาพให้คมชัด
แต่มิใช่เพื่อจุดประสงค์ในการรวมแสง ดังเช่น เลนส์ของกล้องแบบหักเหแสง เราจะพบว่า
กล้องโทรทรรศน์ขนาดใหญ่ที่อยู่ในหอดูดาว ส่วนใหญ่ มักจะเป็นกล้องโทรทรรศน์แบบนี้
1. ขาตั้งแบบอัลตาซิมุธ (Alt-azimuth Mount) เป็นขาตั้งกล้องแบบพื้นฐาน ซึ่งหันกล้องได้ 2 แกน คือ หันตามแนวราบทางข้าง และกระดกขึ้นลงในแนวดิ่ง ขากล้องชนิดนี้เหมาะสำหรับการใช้งานดูวิว
ทั่วไป ดูนก หรือดูดาว ซึ่งไม่ใช้กำลังขยายสูง โดยทั่วไปจะพบเห็นใน 2 ลักษณะคือ แบบสามขา (Tripod) และแบบด๊อบโซเนียน (Dobsonian) ซึ่งใช้กับกล้องโทรทรรศน์แบบสะท้อนแสง
![]() |
ขาตั้งกล้องแบบอัลตาซิมุธ |
2. ขาตั้งแบบอีเควทอเรียล (Equatorial
Mount) เป็นขาตั้งซึ่งมีแกนเอียงขนานกับแกนของโลก
แกนนี้จะเล็งไปยังตำแหน่งขั้วฟ้า (ใกล้ดาวเหนือ)
และหมุนด้วยความเร็วเท่ากับโลกหมุนรอบตัวเอง ทำให้ลำกล้องชี้ไปยังดาวที่ต้องการตลอดเวลา ขากล้องชนิดนี้เหมาะ
สำหรับการดูดาวที่ต้องใช้กำลังขยายสูงและงานถ่ายภาพทางดาราศาสตร์
ระบบขนส่งอวกาศ
ระบบการขนส่งอวกาศเป็นโครงการที่ถูกออกแบบให้สามารถนำชิ้นส่วนบางส่วนที่ใช้ไปแล้วกลับมาใช้ใหม่อีกเพื่อเป็นการประหยัดและมีประสิทธิภาพมากที่สุด ประกอบด้วย 3 ส่วนหลัก คือ จรวดเชื้อเพลิงแข็ง ถังเชื้อเพลิงภายนอก (สำรองไฮโดรเจนเหลวและออกซิเจนเหลว) และยานอวกาศ
ระบบขนส่งอวกาศมีน้ำหนักรวมเมื่อขึ้นจากฐานปล่อยประมาณ
2,041,200 กิโลกรัม โดยจรวดเชื้อเพลิงแข็งจะถูกขับเคลื่อนจากฐานปล่อยให้นำพาทั้งระบบขึ้นสู่อวกาศด้วยความเร็วที่มากกว่าค่าความเร็วหลุดพ้น
เมื่อถึงระดับหนึ่งจรวดเชื้อเพลิงแข็งทั้งสองข้างจะแยกตัวออกมาจากระบบ
จากนั้นถังเชื้อเพลิงภายนอกจะแยกตัวออกจากยานอวกาศ
โดยตัวยานอวกาศจะเข้าสู่วงโคจรเพื่อปฏิบัติภารกิจต่อไป
โครงการขนส่งอวกาศขององค์การนาซามีอยู่ด้วยกัน 6 โครงการ คือ
1. โครงการเอนเตอร์ไพรส์
2. โครงการโคลัมเบีย
3. โครงการดิสคัฟเวอรี
4. โครงการแอตแลนติส
5. โครงการแชลแลนเจอร์
6. โครงการเอนเดฟเวอร์
การใช้ประโยชน์จากเทคโนโลยีอวกาศ
1. มีการใช้ความรู้ทางวิทยาศาสตร์ในการศึกษา พัฒนา และประดิษฐ์อุปกรณ์ถ่ายภาพในช่วงคลื่น ๆ จากระยะไกล
2. ทำให้เครื่องรับและส่งสัญญาณมีประสิทธิภาพมากขึ้น
แล้วนำอุปกรณ์และเครื่องส่งสัญญาณไปประกอบเป็นดาวเทียม ที่ถูกส่งขึ้นไปโคจรจรอบโลก
3. ทำให้สามารถสังเกตสิ่งต่าง ๆ
บนโลกได้ระยะไกลในเวลาอันรวดเร็ว
4. ได้เรียนรู้สิ่งต่าง ๆ เกี่ยวกับเอกภพ โลก
ดวงจันทร์ และดาวอื่น ๆ
5. ความก้าวหน้าด้านเทคโนโลยีอวกาศ
ช่วยเปิดเผยความลี้ลับในอดีต และก่อให้เกิดประโยชน์ต่อมนุษย์ในด้านต่าง ๆ มากมาย
ดาวเทียมอุตุนิยมวิทยา
ดาวเทียมอุตุนิยมวิทยาเป็นเครื่องมือที่มีความสำคัญสำหรับกิจการอุตุนิยมวิทยา สามารถใช้สังเกตพื้นที่บนพื้นผิวโลกได้หลายบริเวณ รวมทั้งได้รับรู้ข้อมูลอย่างต่อเนื่องจากทั่วทั้งโลก ดังนั้น ภาพถ่ายที่ได้จากดาวเทียมอุตุนิยมวิทยา เป็นข้อมูลที่สำคัญอย่างหนึ่งสำหรับนักพยากรณ์อากาศ ทำให้สามารถติดตามและ วิเคราะห์ลักษณะอากาศที่เกิดขึ้นในขณะนั้น ๆ โดยเฉพาะในพื้นที่ที่เครื่องมืออื่น ๆ มีข้อจำกัด หรือในมหาสมุทร เช่น ลักษณะของพายุหมุนเขตร้อน เป็นต้น ดังนั้นภาพจากดาวเทียมจึงเป็นเครื่องมือสำหรับติดตามลักษณะอากาศร้ายเพื่อการเตือนภัยได้ดีที่สุดอย่างหนึ่ง นักอุตุนิยมวิทยาสามารถรับรู้ข้อมูลสภาพอากาศในช่วง 50 กิโลเมตร หรือมากกว่าทั่วทั้งโลกได้จากภาพจากดาวเทียม สามารถมองเห็นสภาพอากาศในมุมมองที่สูง และลำดับการเคลื่อนตัวของพายุบนจอคอมพิวเตอร์ได้ ดาวเทียมอุตุนิยมวิทยาดวงแรกเป็นของประเทศสหรัฐอเมริกา ชื่อ TIROS 1 (Television and Infrared Observation Satellite) ขึ้นสู่อวกาศ เมื่อวันที่ 1 เมษายน พ.ศ 2503
![]() |
ดาวเทียมอุตุนิยมวิทยาชนิดวงโคจรค้างฟ้า |
ดาวเทียมสำรวจทรัพยากร
การใช้ดาวเทียมสำรวจทรัพยากรและสภาพแวดล้อมของโลก เป็นการผสมผสานระหว่างเทคโนโลยีการถ่ายภาพ และโทรคมนาคม โดยการทำงานของดาวเทียมสำรวจทรัพยากรจะใช้หลักการ สำรวจข้อมูลจากระยะไกล
หลักการที่สำคัญของดาวเทียมสำรวจทรัพยากร คือ Remote
Sensing โดยใช้คลื่นแสงที่เป็นพลังงานแม่เหล็กไฟฟ้า (EME :
Electro – Magnetic Energy) ทำหน้าที่เสมือนสื่อกลางส่งผ่านระหว่างวัตถุเป้าหมาย
และอุปกรณ์บันทึกข้อมูล อุปกรณ์ถ่ายถาพที่ติดตั้งอยู่บนดาวเทียม
มักจะได้รับการออกแบบให้มีความสามารถถ่ายภาพ
และมีความหลากหลายในรายละเอียดของภาพได้อย่างเหมาะสม เพื่อประโยชน์ในการจำแนกประเภททรัพยากรที่สำคัญๆ
ดาวเทียมสังเกตการณ์ดาราศาสตร์
ดาวเทียมสังเกตการณ์ดาราศาสตร์
เป็นดาวเทียมที่มีกล้องโทรทรรศน์และอุปกรณ์ดาราศาสตร์สำหรับศึกษาวัตถุบนท้องฟ้า ดาวเทียมแบบนี้มีทั้งประเภทโคจรรอบโลก
และประเภทโคจรผ่านไปใกล้ดาวเคราะห์ หรือลงสำรวจดาวเคราะห์ ซึ่งเรียกอีกชื่อหนึ่งว่ายานอวกาศ
เช่น ยานอวกาศวอยเอเจอร์
ดาวเทียมสื่อสาร
ดาวเทียมสื่อสารเป็นดาวเทียมที่ต้องทำงานอยู่ตลอดเวลา เรียกได้ว่าทำงานตลอด 24 ชม. ไม่มีวันหยุด เพื่อที่จะเชื่อมโยงเครือข่ายการสื่อสารของโลกเข้าไว้ด้วยกัน ดาวเทียมสื่อสารเมื่อถูกส่งเข้าสู่วงโคจร มันก็พร้อมที่จะทำงานได้ทันที มันจุส่งสัญญาณไปยังสถานีภาคพื้นดิน สถานีภาคพื้นดินจะรับสัญญาณโดยใช้อุปกรณ์ ที่เรียกว่า “Transponder” ซึ่งเป็นอุปกรณ์ที่ทำหน้าที่พักสัญญาณ แล้วกระจายสัญญาณไปยังจุดรับสัญญาณต่างๆ บนพื้นโลก ดาวเทียมสื่สารสามารถส่งผ่านสัญญาณโทรศัพท์ ข้อมูลต่างๆ รวมถึงสัญญาณภาพโทรทัศน์ได้ไปยังทุกหนทุกแห่ง
ประโยชน์ที่ได้รับ
ด้านการติดต่อสื่อสารโทรคมนาคมทางด้านต่างๆ เช่น ทางด้านสัญญาณโทรทัศน์ สัญญาณโทรศัพท์ ข้อมูลคอมพิวเตอร์
ตัวอย่างดาวเทียมสื่อสาร
ดาวเทียม Thaicom 1 และ 2 เป็นดาวเทียมสื่อสารชุดแรกของประเทศไทย ถูกส่งขึ้นไปโคจรในปี พ.ศ. 2536 และ 2537 ตามลำดับ เพื่อให้บริการทางด้านการสื่อสารมีรัศมีการให้ บริการครอบคลุมทั่วทั้งประเทศไทย และภูมิภาคใกล้เคียง
ดาวเทียม Thaicom 3 เป็นดาวเทียมสื่อสารอีกดวงหนึ่งของประเทศไทย
ถูกส่งขึ้นไปโคจรในปี พ.ศ. 2540 เพื่อให้บริการทางด้านการสื่อสาร
มีรัศมีการให้บริการครอบคลุมทั่วทั้ง 4 ทวีป
![]() |
ดาวเทียมไทยคม |
กล้องโทรทัศน์อวกาศฮับเบิล
กล้องโทรทรรศน์อวกาศฮับเบิล (อังกฤษ: Hubble Space Telescope) คือ กล้องโทรทรรศน์ในวงโคจรของโลกที่กระสวยอวกาศดิสคัฟเวอรีนำส่งขึ้นสู่วงโคจรเมื่อเดือนเมษายน ค.ศ. 1990 ตั้งชื่อตามนักดาราศาสตร์ชาวอเมริกันชื่อ เอ็ดวิน ฮับเบิล กล้องโทรทรรศน์ฮับเบิลเกิดขึ้นจากความร่วมมือระหว่างองค์การนาซาและองค์การอวกาศยุโรป โดยเป็นหนึ่งในโครงการหอดูดาวเอกขององค์การนาซาที่ประกอบด้วย กล้องโทรทรรศน์อวกาศฮับเบิล กล้องรังสีแกมมาคอมป์ตัน กล้องรังสีเอกซ์จันทรา และกล้องโทรทรรศน์อวกาศสปิตเซอร์ กล้องโทรทรรศน์อวกาศฮับเบิล คือภาพถ่ายวัตถุในช่วงคลื่นที่ตามองเห็นที่อยู่ไกลที่สุดเท่าที่เคยมีมากล้องฮับเบิลเป็นกล้องโทรทรรศน์อวกาศตัวเดียวที่ถูกออกแบบมาให้นักบินอวกาศสามารถเข้าไปซ่อมแซมในอวกาศได้ จนถึงวันนี้มีภารกิจซ่อมบำรุงทั้งหมดสี่ภารกิจและกำลังจะมีภารกิจที่ห้าในปี ค.ศ. 2009 เป็นภารกิจสุดท้าย
![]() |
กล้องโทรทัศน์อวกาศฮับเบิล |
การซ่อมครั้งนี้จะทำให้กล้องฮับเบิลสามารถใช้งานได้อย่างน้อยจนถึงปี
2014
ซึ่งเป็นปีที่จะมีการส่งกล้องโทรทรรศน์อวกาศเจมส์
เวบบ์เพื่อใช้งานแทนต่อไป กล้องโทรทรรศน์อวกาศเจมส์ เวบบ์ มีความสามารถสูงกว่ากล้องฮับเบิลมาก
แต่มันจะใช้สำรวจคลื่นช่วงอินฟราเรดเท่านั้น
และไม่สามารถทดแทนความสามารถในการสังเกตสเปกตรัมในช่วงที่ตามองเห็นและช่วงอัลตราไวโอเลตของฮับเบิลได้
![]() |
กล้องโทรทัศน์อวกาศ เจมส์ เวบบ์
วินาทีการปล่อยกระสวยอวกาศ Discovery
(OV-103)
|
อ้างอิง: https://supattra150541blog.wordpress.com/category/บทที่-8-เทคโนโลยีอวกาศ/
ไม่มีความคิดเห็น:
แสดงความคิดเห็น